A complete daily plan for studying to become a Google software engineer.
Google 소프트웨어 엔지니어가되기 위해 공부하기위한 완벽한 일일 계획.
Google Interview University
What is it?
This is my multi-month study plan for going from web developer (self-taught, no CS degree) to Google software engineer.
이것은 웹 개발자 (독학으로, CS 학위 없음)에서 Google 소프트웨어 엔지니어로 이동하기위한 여러 달 간의 학습 계획입니다.
This long list has been extracted and expanded from Google's coaching notes, so these are the things you need to know. There are extra items I added at the bottom that may come up in the interview or be helpful in solving a problem. Many items are from Steve Yegge's "Get that job at Google" and are reflected sometimes word-for-word in Google's coaching notes.
이 긴 목록은 Google의 코칭 노트에서 추출 및 확장되었으므로 알아 두어야 할 사항입니다. 아래쪽에 추가 한 항목이있어 인터뷰에 올 수도 있고 문제를 해결하는 데 도움이 될 수도 있습니다. 많은 항목이 스티브 예지 (Steve Yegge)의 "Get the job at Google"에서 왔으며 때로는 Google의 코칭 노트에 한 마디로 반영됩니다.
I've pared down what you need to know from what Yegge recommends. I've altered Yegge's requirements from information received from my contact at Google. This is meant for new software engineers or those switching from software/web development to software engineering (where computer science knowledge is required). If you have many years of experience and are claiming many years of software engineering experience, expect a harder interview. Read more here.
저는 Yegge가 권하는 것에서 당신이 알아야 할 것을 털어 놓았습니다. Yegge의 요구 사항이 Google 담당자의 정보로 변경되었습니다. 이것은 새로운 소프트웨어 엔지니어 또는 소프트웨어 / 웹 개발에서 소프트웨어 엔지니어링 (컴퓨터 과학 지식이 필요한 곳)으로 전환하는 엔지니어를위한 것입니다. 다년간의 경험이 있고 다년간의 소프트웨어 엔지니어링 경험을 주장하는 경우 더 면밀한 인터뷰를 기대하십시오. 자세한 내용은 여기를 참조하십시오.
If you have many years of software/web development experience, note that Google views software engineering as different from software/web development and they require computer science knowledge.
다년간의 소프트웨어 / 웹 개발 경험이 있다면 Google은 소프트웨어 엔지니어링을 소프트웨어 / 웹 개발과 다르게 간주하며 컴퓨터 과학 지식이 필요합니다.
If you want to be a reliability engineer or systems engineer, study more from the optional list (networking, security).
안정성 엔지니어 또는 시스템 엔지니어가되기를 원하는 경우 옵션 목록 (네트워킹, 보안)에서 더 많은 것을 공부하십시오.
Table of Contents
- What is it? (이건 뭔가요?)
- Why use it? (왜 이용해야하나요?)
- How to use it (어떻게 사용하나요?)
- Get in a Googley Mood
- Did I Get the Job?
- Follow Along with Me (나를 따르기)
- Don't feel you aren't smart enough (당신이 똑똑하지 않다고 생각하지 말자)
- About Google
- About Video Resources
- Interview Process & General Interview Prep
- Pick One Language for the Interview
- Book List
- Before you Get Started (시작하기전에)
- What you Won't See Covered (당신이 쳐다보지 말것)
- Prerequisite Knowledge (사전지식)
- The Daily Plan (일일계획)
- Algorithmic complexity / Big-O / Asymptotic analysis (점근분석)
- Data Structures
- More Knowledge
- Trees
- Trees - Notes & Background
- Binary search trees: BSTs
- Heap / Priority Queue / Binary Heap
- balanced search trees (general concept, not details)
- traversals: preorder, inorder, postorder, BFS, DFS
- Sorting
- selection
- insertion
- heapsort
- quicksort
- merge sort
- Graphs
- directed
- undirected
- adjacency matrix
- adjacency list
- traversals: BFS, DFS
- Even More Knowledge
- Recursion
- Dynamic Programming
- Object-Oriented Programming
- Design Patterns
- Combinatorics (n choose k) & Probability
- NP, NP-Complete and Approximation Algorithms
- Caches
- Processes and Threads
- Papers
- Testing
- Scheduling
- Implement system routines
- String searching & manipulations
- System Design, Scalability, Data Handling (if you have 4+ years experience)
- Final Review
- Coding Question Practice
- Coding exercises/challenges
- Once you're closer to the interview
- Your Resume
- Be thinking of for when the interview comes
- Have questions for the interviewer
- Once You've Got The Job
---------------- Everything below this point is optional ----------------
- Additional Books
- Additional Learning
- Compilers
- Floating Point Numbers
- Unicode
- Endianness
- Emacs and vi(m)
- Unix command line tools
- Information theory
- Parity & Hamming Code
- Entropy
- Cryptography
- Compression
- Networking (if you have networking experience or want to be a systems engineer, expect questions) (네트워킹 경험이 있거나 시스템 엔지니어가되고 싶다면 질문을 기대하십시오)
- Computer Security
- Garbage collection
- Parallel Programming
- Messaging, Serialization, and Queueing Systems
- Fast Fourier Transform
- Bloom Filter
- HyperLogLog
- Locality-Sensitive Hashing
- van Emde Boas Trees
- Augmented Data Structures
- Tries
- N-ary (K-ary, M-ary) trees
- Balanced search trees
- AVL trees
- Splay trees
- Red/black trees
- 2-3 search trees
- 2-3-4 Trees (aka 2-4 trees)
- N-ary (K-ary, M-ary) trees
- B-Trees
- k-D Trees
- Skip lists
- Network Flows
- Disjoint Sets & Union Find
- Math for Fast Processing
- Treap
- Linear Programming
- Geometry, Convex hull
- Discrete math
- Machine Learning
- Go
- Additional Detail on Some Subjects
- Video Series
- Computer Science Courses
Why use it?
I'm following this plan to prepare for my Google interview. I've been building the web, building services, and launching startups since 1997. I have an economics degree, not a CS degree. I've been very successful in my career, but I want to work at Google. I want to progress into larger systems and get a real understanding of computer systems, algorithmic efficiency, data structure performance, low-level languages, and how it all works. And if you don't know any of it, Google won't hire you.
나는 Google 인터뷰를 준비하기 위해이 계획을 따르고 있습니다. 저는 1997 년부터 웹을 구축하고 서비스를 구축하며 신생 기업을 시작했습니다. 저는 CS 학위가 아닌 경제학 학위를 받았습니다. 나는 경력상으로 매우 성공적 이었지만 Google에서 일하고 싶습니다. 더 큰 시스템으로 발전하고 컴퓨터 시스템, 알고리즘 효율성, 데이터 구조 성능, 저수준 언어 및 모든 기능을 실제로 이해하고 싶습니다. 그리고 그 중 하나를 모르는 경우 Google은 사용자를 고용하지 않습니다.
When I started this project, I didn't know a stack from a heap, didn't know Big-O anything, anything about trees, or how to traverse a graph. If I had to code a sorting algorithm, I can tell ya it wouldn't have been very good. Every data structure I've ever used was built into the language, and I didn't know how they worked under the hood at all. I've never had to manage memory unless a process I was running would give an "out of memory" error, and then I'd have to find a workaround. I've used a few multidimensional arrays in my life and thousands of associative arrays, but I've never created data structures from scratch.
이 프로젝트를 시작했을 때, 나는 힙으로부터 스택을 알지 못했고, Big-O, 나무에 관한 것, 또는 그래프를 트래버스하는 방법에 대해 몰랐습니다. 정렬 알고리즘을 코딩해야한다면 아주 좋지 않았다고 말할 수 있습니다. 내가 사용한 적이있는 모든 데이터 구조는 언어에 내장되어 있으며, 어떻게 작동하는지 알지 못했습니다. 필자는 실행중인 프로세스에서 "메모리 부족"오류가 발생하지 않는 한 메모리를 관리 할 필요가 없었으며 해결 방법을 찾아야했습니다. 필자는 평생 동안 몇 개의 다차원 배열과 수천 개의 연관 배열을 사용했지만 데이터 구조를 처음부터 만들지 않았습니다.
But after going through this study plan I have high confidence I'll be hired. It's a long plan. It's going to take me months. If you are familiar with a lot of this already it will take you a lot less time.
그러나 이 학습 계획을 밟은 후에 나는 내가 고용 될 것이라는 높은 확신을 가지고 있습니다. 그것은 긴 계획입니다. 몇 달이 걸릴거야. 이미 많은 것을 알고 있다면 이미 시간이 많이 걸릴 것입니다.
How to use it
Everything below is an outline, and you should tackle the items in order from top to bottom.
I'm using Github's special markdown flavor, including tasks lists to check progress.
아래의 모든 내용은 개요이며, 항목을 위에서 아래로 순서대로 처리해야합니다.
진행 상황을 확인하기위한 작업 목록을 포함하여 Github의 특별 제작물을 사용하고 있습니다.
Create a new branch so you can check items like this, just put an x in the brackets:
다음과 같이 항목을 확인할 수 있도록 새 분기를 만듭니다. x를 대괄호에 넣으십시오.
(git에서 받는 내용..)
normalFork a branch and follow the commands below
normal
normal
git init
git checkout -b progress
git remote add jwasham https://github.com/jwasham/google-interview-university
git fetch --all
normalMark all boxes with X after you completed your changes
normal
normal
git add .
git commit -m "Marked x"
git rebase jwasham/master
git push --force
Get in a Googley Mood
Print out a "future Googler" sign (or two) and keep your eyes on the prize.
'미래의 Google 직원'표지판 (또는 2 개)을 인쇄하고 눈을 주목하십시오.
Did I Get the Job?
I'm in the queue right now. Hope to interview soon.
normalThanks for the referral, JP.
normal
normal
Follow Along with Me
Don't feel you aren't smart enough
- Google engineers are smart, but many have an insecurity that they aren't smart enough, even though they work at Google.
- The myth of the Genius Programmer
- It's Dangerous to Go Alone: Battling the Invisible Monsters in Tech
- Google 엔지니어는 똑똑하지만 많은 사람들은 Google에서 근무하지만 스마트하지 못하다는 불안감을 가지고 있습니다.
- 천재 프로그래머의 신화
- 혼자서가는 것이 위험합니다. 기술에서 보이지 않는 괴물과 싸우십시오.
About Google
- For students - Google Careers: Technical Development Guide
- How Search Works:
- The Evolution of Search (video)
- How Search Works - the story
- How Search Works
- How Search Works - Matt Cutts (video)
- How Google makes improvements to its search algorithm (video)
- Series:
- How Google Search Dealt With Mobile
- Google's Secret Study To Find Out Our Needs
- Google Search Will Be Your Next Brain
- The Deep Mind Of Demis Hassabis
- Book: How Google Works
- Made by Google announcement - Oct 2016 (video)
About Video Resources
Some videos are available only by enrolling in a Coursera, EdX, or Lynda.com class. These are called MOOCs. Sometimes the classes are not in session so you have to wait a couple of months, so you have no access. Lynda.com courses are not free.
일부 비디오는 Coursera, EdX 또는 Lynda.com 클래스에 등록 할 때만 사용할 수 있습니다. 이것들을 MOOC라고합니다. 때로는 수업이 진행되지 않아서 몇 달을 기다려야하므로 액세스 할 수 없습니다. Lynda.com 과정은 무료가 아닙니다.
normalI'd appreciate your help to add free and always-available public sources, such as YouTube videos to accompany the online course videos.
I like using university lectures.
정상적으로 온라인 동영상과 함께 제공되는 YouTube 동영상과 같이 항상 무료로 제공되는 공개 소스를 추가하는 데 협조 해 주셔서 감사합니다.
I like using university lectures.
정상적으로 온라인 동영상과 함께 제공되는 YouTube 동영상과 같이 항상 무료로 제공되는 공개 소스를 추가하는 데 협조 해 주셔서 감사합니다.
그중 나는 대학 강의를 좋아합니다.
Interview Process & General Interview Prep
- Videos:
- How to Work at Google: Prepare for an Engineering Interview (video)
- How to Work at Google: Example Coding/Engineering Interview (video)
- How to Work at Google - Candidate Coaching Session (video)
- Google Recruiters Share Technical Interview Tips (video)
- How to Work at Google: Tech Resume Preparation (video)
- Articles:
- Becoming a Googler in Three Steps
- Get That Job at Google
- all the things he mentions that you need to know are listed below
- (very dated) How To Get A Job At Google, Interview Questions, Hiring Process
- Phone Screen Questions
- Prep Courses:
- Software Engineer Interview Unleashed (paid course):
- Learn how to make yourself ready for software engineer interviews from a former Google interviewer.
- Additional (not suggested by Google but I added):
- ABC: Always Be Coding
- Four Steps To Google Without A Degree
- Whiteboarding
- How Google Thinks About Hiring, Management And Culture
- Effective Whiteboarding during Programming Interviews
- Cracking The Coding Interview Set 1:
- Gayle L McDowell - Cracking The Coding Interview (video)
- Cracking the Coding Interview with Author Gayle Laakmann McDowell (video)
- How to Get a Job at the Big 4:
- Failing at Google Interviews
Pick One Language for the Interview
I wrote this short article about it: Important: Pick One Language for the Google Interview
You can use a language you are comfortable in to do the coding part of the interview, but for Google, these are solid choices:
나는이 짧은 글을 썼다 : 중요 : 구글 인터뷰를위한 하나의 언어 선택
면접의 코딩 부분에 익숙한 언어를 사용할 수 있지만 Google의 경우 다음과 같은 확실한 선택이 가능합니다.
- C++
- Java
- Python
You could also use these, but read around first. There may be caveats:
이것들을 사용할 수도 있지만, 먼저 읽으십시오. 주의 사항이있을 수 있습니다.
- JavaScript
- Ruby
You need to be very comfortable in the language and be knowledgeable.
Read more about choices:
언어에 익숙하고 지식이 풍부해야합니다.
선택 사항에 대해 자세히 알아보십시오.
- http://www.byte-by-byte.com/choose-the-right-language-for-your-coding-interview/
- http://blog.codingforinterviews.com/best-programming-language-jobs/
- https://www.quora.com/What-is-the-best-language-to-program-in-for-an-in-person-Google-interview
You'll see some C, C++, and Python learning included below, because I'm learning. There are a few books involved, see the bottom.
아래에서 C, C ++ 및 Python 학습을 볼 수 있습니다. 학습 중이기 때문입니다. 몇 권의 책이 있습니다, 하단을보십시오.
Book List
This is a shorter list than what I used. This is abbreviated to save you time.
이것은 제가 사용했던 것보다 짧은 목록입니다. 이것은 시간을 절약하기 위해 축약되었습니다.
Interview Prep
- Programming Interviews Exposed: Secrets to Landing Your Next Job, 2nd Edition
- answers in C++ and Java
- recommended in Google candidate coaching
- this is a good warm-up for Cracking the Coding Interview
- not too difficult, most problems may be easier than what you'll see in an interview (from what I've read)
- Cracking the Coding Interview, 6th Edition [코딩인터뷰완전분석] http://www.aladin.co.kr/shop/wproduct.aspx?ItemId=19063480
- answers in Java
- recommended on the Google Careers site
- If you see people reference "The Google Resume", it was a book replaced by "Cracking the Coding Interview".
If you have tons of extra time:
- Elements of Programming Interviews
- all code is in C++, very good if you're looking to use C++ in your interview
- a good book on problem solving in general.
Computer Architecture
If short on time:
- Write Great Code: Volume 1: Understanding the Machine
- http://www.aladin.co.kr/shop/wproduct.aspx?ItemId=573386
- The book was published in 2004, and is somewhat outdated, but it's a terrific resource for understanding a computer in brief.
- 이 책은 2004 년에 출간되었지만 시대에 뒤떨어 지지만 간단히 컴퓨터를 이해하는 데는 훌륭한 자료입니다.
- The author invented HLA, so take mentions and examples in HLA with a grain of salt. Not widely used, but decent examples of what assembly looks like.
- 저자는 HLA를 발명 했으므로 HLA에서 소금과 함께 언급과 예를 들어보십시오. 널리 쓰이는 것은 아니지만, 어셈블리가 어떻게 생겼는지에 대한 예의 바른 예.
- These chapters are worth the read to give you a nice foundation:
- Chapter 2 - Numeric Representation
- Chapter 3 - Binary Arithmetic and Bit Operations
- Chapter 4 - Floating-Point Representation
- Chapter 5 - Character Representation
- Chapter 6 - Memory Organization and Access
- Chapter 7 - Composite Data Types and Memory Objects
- Chapter 9 - CPU Architecture
- Chapter 10 - Instruction Set Architecture
- Chapter 11 - Memory Architecture and Organization
If you have more time (I want this book):
- Computer Architecture, Fifth Edition: A Quantitative Approach
- For a richer, more up-to-date (2011), but longer treatment
Language Specific
You need to choose a language for the interview (see above). Here are my recommendations by language. I don't have resources for all languages. I welcome additions.
면접을위한 언어를 선택해야합니다 (위 참조). 다음은 언어 별 권장 사항입니다. 나는 모든 언어에 대한 자원이 없다. 나는 추가를 환영한다.
If you read though one of these, you should have all the data structures and algorithms knowledge you'll need to start doing coding problems. You can skip all the video lectures in this project, unless you'd like a review.
이 중 하나를 읽는다면 코딩 문제를 시작하는 데 필요한 모든 데이터 구조와 알고리즘 지식을 가져야합니다. 리뷰를 원하지 않는다면이 프로젝트의 모든 비디오 강의를 건너 뛸 수 있습니다.
언어를 선택한 후 데이터구조와 알고리즘에 대한 공부 필요. (DataStructures and Algorithms)
C++
I haven't read these two, but they are highly rated and written by Sedgewick. He's awesome.
- Algorithms in C++, Parts 1-4: Fundamentals, Data Structure, Sorting, Searching
- Algorithms in C++ Part 5: Graph Algorithms
If you have a better recommendation for C++, please let me know. Looking for a comprehensive resource.
Java
- Algorithms (Sedgewick and Wayne)
- videos with book content (and Sedgewick!):
OR:
- Data Structures and Algorithms in Java
- by Goodrich, Tamassia, Goldwasser
- used as optional text for CS intro course at UC Berkeley
- see my book report on the Python version below. This book covers the same topics.
Python
- Data Structures and Algorithms in Python
- by Goodrich, Tamassia, Goldwasser
- I loved this book. It covered everything and more.
- Pythonic code
- my glowing book report: https://googleyasheck.com/book-report-data-structures-and-algorithms-in-python/
Optional Books
Some people recommend these, but I think it's going overboard, unless you have many years of software engineering experience and expect a much harder interview:
어떤 사람들은 이것을 권장하지만, 오랜 기간의 소프트웨어 공학 경험이 있고 면접을 훨씬 더 기대하지 않는 한, 그것이 외출이 될 것이라고 생각합니다.
- Algorithm Design Manual (Skiena)
- As a review and problem recognition
- 리뷰 및 문제 인식
- The algorithm catalog portion is well beyond the scope of difficulty you'll get in an interview.
- 알고리즘 카탈로그 부분은 인터뷰에서 얻는 어려움의 범위를 훨씬 뛰어 넘습니다.
- This book has 2 parts:
- 이 책은 2 부분으로 구성되어 있습니다.
- class textbook on data structures and algorithms
- 자료 구조 및 알고리즘에 관한 교과서
- pros:
- is a good review as any algorithms textbook would be
- nice stories from his experiences solving problems in industry and academia
- code examples in C
- 어떤 알고리즘 교과서보다도 좋은 리뷰입니다.
- 업계 및 학계의 문제를 해결 한 경험에 대한 멋진 이야기
- cons:
- can be as dense or impenetrable as CLRS, and in some cases, CLRS may be a better alternative for some subjects
- chapters 7, 8, 9 can be painful to try to follow, as some items are not explained well or require more brain than I have
- don't get me wrong: I like Skiena, his teaching style, and mannerisms, but I may not be Stony Brook material.
- CLRS만큼 치밀하거나 통용되지 않을 수 있으며, 경우에 따라 CLRS가 일부 주제에 대해 더 나은 대안이 될 수 있습니다
- 7 장, 8 장, 9 장은 어떤 항목이 잘 설명되지 않거나 내가 가지고있는 것보다 더 많은 두뇌를 필요로하기 때문에 따라하기 위해 고통 스러울 수 있습니다.
- 내가 틀린 말을하지 마라. 나는 Skiena, 그의 가르침 양식 및 버릇을 좋아하지만 Stony Brook 자료가 아닐 수도있다.
- algorithm catalog:
- 알고리즘 카탈로그 :
- this is the real reason you buy this book.
- about to get to this part. Will update here once I've made my way through it.
- 이것이 당신이이 책을 사는 진정한 이유입니다.
- 이 부분에 도착하려고합니다. 일단 내가 그것을 통해 자신의 길을 만들었습니다 여기에 업데이 트됩니다.
- To quote Yegge: "More than any other book it helped me understand just how astonishingly commonplace (and important) graph problems are – they should be part of every working programmer's toolkit. The book also covers basic data structures and sorting algorithms, which is a nice bonus. But the gold mine is the second half of the book, which is a sort of encyclopedia of 1-pagers on zillions of useful problems and various ways to solve them, without too much detail. Almost every 1-pager has a simple picture, making it easy to remember. This is a great way to learn how to identify hundreds of problem types.”
- 예거 (Yegge)의 말 : "다른 어떤 책보다도 많은 것은 그래프의 문제가 얼마나 평범하고 중요한지를 이해하는 데 도움이되었습니다. 모든 작업 프로그래머의 툴킷에 포함되어야합니다.이 책에는 기본적인 데이터 구조와 정렬 알고리즘이 포함되어 있습니다. 좋은 보너스입니다.하지만 금광은이 책의 후반부에 있습니다.이 책은 여러 가지 유용한 문제들과 그것들을 해결할 수있는 다양한 방법으로 1 페이지의 백과 사전을 제공합니다. 거의 모든 1 페이지 호출기는 간단한 그림을 통해 기억하기 쉬워 수백 가지 문제 유형을 식별하는 방법을 배울 수있는 좋은 방법입니다. "
- Can rent it on kindle
- Half.com is a great resource for textbooks at good prices.
- Answers:
- Errata
- Introduction to Algorithms (http://used.aladin.co.kr/shop/wproduct.aspx?ItemId=97689820)
- Important: Reading this book will only have limited value. This book is a great review of algorithms and data structures, but won't teach you how to write good code. You have to be able to code a decent solution efficiently.
- 중요 :이 책을 읽는 것은 가치가 제한됩니다. 이 책은 알고리즘 및 데이터 구조를 잘 검토하지만 좋은 코드를 작성하는 방법을 가르쳐주지는 않습니다. 적절한 솔루션을 효율적으로 코딩 할 수 있어야합니다.
- To quote Yegge: "But if you want to come into your interviews prepped, then consider deferring your application until you've made your way through that book.”
- * Yegge의 말을 인용하자면 : "그러나 면접에 참여하기를 원한다면, 그 책을 통해 길을 나서기 전까지는 신청서를 연기하는 것을 고려하십시오."
- Half.com is a great resource for textbooks at good prices.
- aka CLR, sometimes CLRS, because Stein was late to the game
- Programming Pearls (생각하는 프로그래밍)
- The first couple of chapters present clever solutions to programming problems (some very old using data tape) but that is just an intro. This a guidebook on program design and architecture, much like Code Complete, but much shorter.
- 처음 몇 장은 프로그래밍 문제에 대한 영리한 해결책을 제시합니다 (일부는 데이터 테이프를 사용하여 아주 오래된 것입니다).하지만 그것은 단지 소개 일뿐입니다. 이것은 코드 완성과 비슷하지만 프로그램 디자인 및 아키텍처에 관한 안내서입니다.
"Algorithms and Programming: Problems and Solutions" by Shen- A fine book, but after working through problems on several pages I got frustrated with the Pascal, do while loops, 1-indexed arrays, and unclear post-condition satisfaction results.
- Would rather spend time on coding problems from another book or online coding problems.
- 좋은 책이지만, 여러 페이지에서 문제를 해결 한 후에 파스칼에 대한 좌절, while 루프, 1-indexed 배열 및 불명확 한 사후 만족도 결과가 있습니다.
- 오히려 다른 책이나 온라인 코딩 문제로 인한 코딩 문제에 시간을 할애 할 것입니다.
Before you Get Started (시작하기 전에)
This list grew over many months, and yes, it kind of got out of hand.
Here are some mistakes I made so you'll have a better experience.
이 목록은 여러 달 동안 자랐고 일종의 손에 닿았습니다.
여기에 제가 실수를해서 더 나은 경험을 할 수 있습니다.
1. You Won't Remember it All (당신은 그것을 모두 기억하지 못할 것입니다.)
I watched hours of videos and took copious notes, and months later there was much I didn't remember. I spent 3 days going through my notes and making flashcards so I could review.
나는 몇 시간의 비디오를 보았고 풍부한 노트를 가지고 있었고, 몇 달 후 나는 기억이 안났다. 3 일 동안 메모를 작성하고 플래시 카드를 만들어 검토 할 수있었습니다.
Read please so you won't make my mistakes:
제 실수를하지 않도록 읽어주십시오 :
2. Use Flashcards (플래시카드를 사용하세요)
To solve the problem, I made a little flashcards site where I could add flashcards of 2 types: general and code. Each card has different formatting.
이 문제를 해결하기 위해 일반 및 코드의 2 가지 유형의 플래시 카드를 추가 할 수있는 작은 플래시 카드 사이트를 만들었습니다. 각 카드의 서식이 다릅니다.
I made a mobile-first website so I could review on my phone and tablet, wherever I am.
휴대 전화로 웹 사이트를 만들었으므로 어디에서나 휴대 전화와 태블릿을 검토 할 수 있습니다.
Make your own for free:
- Flashcards site repo
- My flash cards database (old - 1200 cards):
- My flash cards database (new - 1800 cards):
Keep in mind I went overboard and have cards covering everything from assembly language and Python trivia to machine learning and statistics. It's way too much for what's required by Google.
내가 배 밖으로 나가서 어셈블리 언어와 파이썬 퀴즈부터 기계 학습 및 통계에 이르기까지 모든 것을 다루는 카드를 가지고 있음을 기억하십시오. 그것은 Google에서 요구하는 것에 너무 많은 것입니다.
Note on flashcards: The first time you recognize you know the answer, don't mark it as known. You have to see the same card and answer it several times correctly before you really know it. Repetition will put that knowledge deeper in your brain.
플래시 카드에 대한 참고 사항 : 처음에는 대답을 알고 있음을 알게 될 때 대답을 알지 마십시오. 같은 카드를 실제로보고 여러 번 올바르게 대답해야만합니다. 반복은 그 지식을 당신의 두뇌에 깊게 뿌릴 것입니다.
An alternative to using my flashcard site is Anki, which has been recommended to me numerous times. It uses a repetition system to help you remember. It's user-friendly, available on all platforms and has a cloud sync system. It costs $25 on iOS but is free on other platforms.
내 플래시 카드 사이트를 사용하는 대안은 Anki입니다. Anki는 저에게 여러 번 추천되었습니다. 반복 시스템을 사용하여 기억하는 데 도움을줍니다. 사용자 친화적이며 모든 플랫폼에서 사용할 수 있으며 클라우드 동기화 시스템을 갖추고 있습니다. iOS에서는 25 달러이지만 다른 플랫폼에서는 무료입니다.
My flashcard database in Anki format: https://ankiweb.net/shared/info/25173560 (thanks @xiewenya)
3. Review, review, review (다시보기)
I keep a set of cheat sheets on ASCII, OSI stack, Big-O notations, and more. I study them when I have some spare time.
Take a break from programming problems for a half hour and go through your flashcards.
나는 ASCII, OSI 스택, Big-O 표기법 등에 관한 일련의 치트 시트를 유지한다. 나는 여유 시간이있을 때 그들을 공부합니다.
30 분 동안 프로그래밍 문제를 풀고 플래시 카드를 살펴보십시오.
4. Focus (집중하라)
There are a lot of distractions that can take up valuable time. Focus and concentration are hard.
귀중한 시간을 할애 할 산만 함이 많이 있습니다. 집중과 집중력이 어렵다.
What you won't see covered (당신이 보지 않을 것들)
This big list all started as a personal to-do list made from Google interview coaching notes. These are prevalent technologies but were not mentioned in those notes:
이 큰 목록은 모두 Google 인터뷰 코칭 노트에서 개인 일람표로 시작되었습니다. 이들은 널리 퍼져있는 기술이지만 그 노트에 언급되지 않았습니다 :
- SQL
- Javascript
- HTML, CSS, and other front-end technologies
The Daily Plan
Some subjects take one day, and some will take multiple days. Some are just learning with nothing to implement.
일부 과목에는 하루가 걸리고 일부는 여러 날이 걸립니다. 일부는 구현할 것이 아무것도없이 학습하고 있습니다.
Each day I take one subject from the list below, watch videos about that subject, and write an implementation in:
매일 아래 목록에서 하나의 주제를 선택하고 주제에 관한 비디오를보고 다음에서 구현을 작성합니다 :
- C - using structs and functions that take a struct * and something else as args.
- C - 구조체와 함수를 사용하여 struct * 및 다른 것을 args로 사용합니다.
- C++ - without using built-in types
- C++ - 내장 유형을 사용하지 않고
- C++ - using built-in types, like STL's std::list for a linked list
- C++ - Linked List 에 대한 STL의 std :: list와 같은 기본 제공 유형 사용
- Python - using built-in types (to keep practicing Python)
- Python - 기본 제공 형식 사용 (파이썬 연습 유지)
- and write tests to ensure I'm doing it right, sometimes just using simple assert() statements
- You may do Java or something else, this is just my thing.
- 내가 제대로하고 있는지 확인하기 위해 테스트를 작성하고 때로는 단순한 assert () 문을 사용한다.
- 당신은 자바 또는 다른 것을 할 수 있습니다, 이것은 단지 나의 것입니다.
You don't need all these. You need only one language for the interview.
당신은이 모든 것을 필요로하지 않습니다. 인터뷰에는 하나의 언어 만 있으면됩니다.
Why code in all of these? (왜 이들 모두에 코드가 있습니까?)
- Practice, practice, practice, until I'm sick of it, and can do it with no problem (some have many edge cases and bookkeeping details to remember)
- 연습이 어려워 지지않을까지 연습하고, 연습하고, 연습하십시오. 문제가 될 수 없도록 (일부는 기억해야 할 많은 경우와 부기가 있습니다)
- Work within the raw constraints (allocating/freeing memory without help of garbage collection (except Python))
- 원시 제약 조건 내에서 작업하기 (할당/해지하기 GC를 제외하고.. (파이썬은 제외))
- Make use of built-in types so I have experience using the built-in tools for real-world use (not going to write my own linked list implementation in production)
- 내장 유형을 사용하여 실제 사용을 위해 내장 도구를 사용해 본 경험이 있습니다. (프로덕션에서 내 자신의 링크 된 목록 구현을 작성하지 않을 것임)
I may not have time to do all of these for every subject, but I'll try.
모든 주제에 대해이 모든 작업을 수행 할 시간이 없을 수도 있지만 시도하겠습니다.
You can see my code here:
You don't need to memorize the guts of every algorithm.
Write code on a whiteboard or paper, not a computer. Test with some sample inputs. Then test it out on a computer.
당신은 모든 알고리즘의 내장을 암기 할 필요가 없습니다.
컴퓨터가 아닌 화이트 보드 또는 종이에 코드를 작성하십시오. 몇 가지 샘플 입력으로 테스트하십시오. 그런 다음 컴퓨터에서 테스트 해보십시오.
Prerequisite Knowledge (사전 지식)
- Learn C (C를 배워라)
- C is everywhere. You'll see examples in books, lectures, videos, everywhere while you're studying.
- C는 어디 에나있다. 공부하는 동안 책, 강의, 비디오 등의 예를 볼 수 있습니다.
- C Programming Language, Vol 2
- This is a short book, but it will give you a great handle on the C language and if you practice it a little you'll quickly get proficient. Understanding C helps you understand how programs and memory work.
- answers to questions
- How computers process a program: (컴퓨터가 프로그램을 처리하는 방법)
Algorithmic complexity / Big-O / Asymptotic analysis
- nothing to implement
- Harvard CS50 - Asymptotic Notation (video)
- Big O Notations (general quick tutorial) (video)
- Big O Notation (and Omega and Theta) - best mathematical explanation (video)
- Skiena:
- A Gentle Introduction to Algorithm Complexity Analysis
- Orders of Growth (video)
- Asymptotics (video)
- UC Berkeley Big O (video)
- UC Berkeley Big Omega (video)
- Amortized Analysis (video)
- Illustrating "Big O" (video)
- TopCoder (includes recurrence relations and master theorem):
- Cheat sheet If some of the lectures are too mathy, you can jump down to the bottom and watch the discrete mathematics videos to get the background knowledge. (강의 중 일부가 너무 수학적이라면 하단으로 이동하여 이산 수학 비디오를 보면서 배경 지식을 얻을 수 있습니다.)
Data Structures
- Arrays
- Implement an automatically resizing vector.
- 자동 크기 조정 벡터를 구현하십시오.
- Description:
- Arrays (video)
- UCBerkley CS61B - Linear and Multi-Dim Arrays (video)
- Basic Arrays (video)
- Multi-dim (video)
- Dynamic Arrays (video)
- Jagged Arrays (video)
- Jagged Arrays (video)
- Resizing arrays (video)
- Implement a vector (mutable array with automatic resizing):
- 벡터 (자동 크기 조정 기능이있는 가변 배열) 구현 :
- Practice coding using arrays and pointers, and pointer math to jump to an index instead of using indexing.
- 배열과 포인터를 사용하여 코딩을 연습하고, 포인터를 사용하여 색인을 사용하는 대신 색인으로 이동하십시오.
- new raw data array with allocated memory
- 할당 된 메모리가있는 새로운 원시 데이터 배열
- can allocate int array under the hood, just not use its features
- start with 16, or if starting number is greater, use power of 2 - 16, 32, 64, 128
- 후드에서 int 배열을 할당 할 수 있습니다.
- 16으로 시작하거나 시작 숫자가 더 큰 경우 2 - 16, 32, 64, 128의 힘을 사용하십시오
- size() - number of items
- capacity() - number of items it can hold
- is_empty()
- at(index) - returns item at given index, blows up if index out of bounds (주어진 인덱스에서 아이템을 반환하고, 인덱스가 범위를 벗어나면 폭발한다.)
- push(item)
- insert(index, item) - inserts item at index, shifts that index's value and trailing elements to the right
- prepend(item) - can use insert above at index 0 (인덱스 0에서 위의 삽입을 사용할 수 있습니다.)
- pop() - remove from end, return value
- delete(index) - delete item at index, shifting all trailing elements left
- remove(item) - looks for value and removes index holding it (even if in multiple places)
- find(item) - looks for value and returns first index with that value, -1 if not found
- resize(new_capacity) // private function
- when you reach capacity, resize to double the size
- when popping an item, if size is 1/4 of capacity, resize to half
- 용량에 도달하면 크기를 두 배로 늘립니다.
- 항목을 팝하는 경우 크기가 용량의 1/4이면 절반으로 크기 조정
- Time
- O(1) to add/remove at end (amortized for allocations for more space), index, or update
- O(n) to insert/remove elsewhere
- O (1) 끝에 추가 / 제거 (더 많은 공간에 대한 할당에 대해 상환), 색인 또는 업데이트
- 다른 곳에 삽입 / 제거 할 O (n)
- Space
- contiguous in memory, so proximity helps performance
- space needed = (array capacity, which is >= n) * size of item, but even if 2n, still O(n)
- 메모리 내에서 연속적이므로 근접성이 성능에 도움이됩니다.
- 필요한 공간 = (배열 용량, => n) * 항목의 크기,하지만 2n 경우에도 여전히 O (n)
- Linked Lists
- Description:
- C Code (video) - not the whole video, just portions about Node struct and memory allocation. (전체 비디오가 아니라 노드 구조체 및 메모리 할당에 관한 부분입니다.)
- Linked List vs Arrays:
- why you should avoid linked lists (video)
- Gotcha: you need pointer to pointer knowledge: (for when you pass a pointer to a function that may change the address where that pointer points) This page is just to get a grasp on ptr to ptr. I don't recommend this list traversal style. Readability and maintainability suffer due to cleverness.
- Gotcha : 포인터 지식에 대한 포인터가 필요합니다. (해당 포인터가 가리키는 주소를 변경할 수있는 함수에 대한 포인터를 전달할 때)이 페이지는 ptr에 대한 이해를 얻는 것입니다. 이 목록 순회 스타일은 권장하지 않습니다. 가독성과 유지 보수성은 영리함으로 인해 어려움을 겪습니다.
- implement (I did with tail pointer & without):
- size() - returns number of data elements in list
- empty() - bool returns true if empty
- value_at(index) - returns the value of the nth item (starting at 0 for first)
- push_front(value) - adds an item to the front of the list
- pop_front() - remove front item and return its value
- push_back(value) - adds an item at the end
- pop_back() - removes end item and returns its value
- front() - get value of front item
- back() - get value of end item
- insert(index, value) - insert value at index, so current item at that index is pointed to by new item at index
- erase(index) - removes node at given index
- value_n_from_end(n) - returns the value of the node at nth position from the end of the list
- reverse() - reverses the list
- remove_value(value) - removes the first item in the list with this value
- Doubly-linked List
- Description (video)
- No need to implement
- Stack
- Stacks (video)
- Using Stacks Last-In First-Out (video)
- Will not implement. Implementing with array is trivial.
- 구현하지 않습니다. 배열로 구현하는 것은 간단합니다.
- Queue
- Using Queues First-In First-Out(video)
- Queue (video)
- Circular buffer/FIFO
- Priority Queues (video)
- Implement using linked-list, with tail pointer:
- 꼬리 포인터를 사용하여 링크 된 목록을 사용하여 구현 :
- enqueue(value) - adds value at position at tail
- dequeue() - returns value and removes least recently added element (front)
- empty()
- Implement using fixed-sized array:
- 고정 크기 배열을 사용하여 구현 :
- enqueue(value) - adds item at end of available storage
- dequeue() - returns value and removes least recently added element
- empty()
- full()
- Cost:
- a bad implementation using linked list where you enqueue at head and dequeue at tail would be O(n) because you'd need the next to last element, causing a full traversal each dequeue
- 꼬리 부분에서 대기열에서 대기열에 넣고 대기열에서 대기열을 제거하는 링크 된 목록을 사용하는 나쁜 구현은 마지막 요소 다음으로 이동해야하므로 각 대기열에서 전체 대기열이 이동하므로 O (n)이됩니다.
- enqueue: O(1) (amortized, linked list and array [probing])
- dequeue: O(1) (linked list and array)
- empty: O(1) (linked list and array)
- Hash table
- Videos:
- Hashing with Chaining (video)
- Table Doubling, Karp-Rabin (video)
- Open Addressing, Cryptographic Hashing (video)
- PyCon 2010: The Mighty Dictionary (video)
- (Advanced) Randomization: Universal & Perfect Hashing (video)
- (Advanced) Perfect hashing (video)
- Online Courses:
- Understanding Hash Functions (video)
- Using Hash Tables (video)
- Supporting Hashing (video)
- Language Support Hash Tables (video)
- Core Hash Tables (video)
- Data Structures (video)
- Phone Book Problem (video)
- distributed hash tables:
- implement with array using linear probing
- 선형 프로빙을 사용하여 어레이로 구현
- hash(k, m) - m is size of hash table
- add(key, value) - if key already exists, update value
- exists(key)
- get(key)
- remove(key)
More Knowledge
- Binary search
- Binary Search (video)
- Binary Search (video)
- detail
- Implement:
- binary search (on sorted array of integers)
- binary search using recursion
- Bitwise operations (비트연산)
- Bits cheat sheet - you should know many of the powers of 2 from (2^1 to 2^16 and 2^32)
- Get a really good understanding of manipulating bits with: &, |, ^, ~, >>, <<
- words
- Good intro: Bit Manipulation (video)
- C Programming Tutorial 2-10: Bitwise Operators (video)
- Bit Manipulation
- Bitwise Operation
- Bithacks
- The Bit Twiddler
- The Bit Twiddler Interactive
- 2s and 1s complement
- count set bits
- 4 ways to count bits in a byte (video)
- Count Bits
- How To Count The Number Of Set Bits In a 32 Bit Integer
- round to next power of 2:
- swap values:
- absolute value:
Trees
- Trees - Notes & Background
- Series: Core Trees (video)
- Series: Trees (video)
- basic tree construction
- traversal
- manipulation algorithms
- BFS (breadth-first search)
- MIT (video)
- level order (BFS, using queue) time complexity: O(n) space complexity: best: O(1), worst: O(n/2)=O(n)
- DFS (depth-first search)
- MIT (video)
- notes: time complexity: O(n) space complexity: best: O(log n) - avg. height of tree worst: O(n)
- inorder (DFS: left, self, right)
- postorder (DFS: left, right, self)
- preorder (DFS: self, left, right)
- Binary search trees: BSTs
- Binary Search Tree Review (video)
- Series (video)
- starts with symbol table and goes through BST applications
- Introduction (video)
- MIT (video)
- C/C++:
- Binary search tree - Implementation in C/C++ (video)
- BST implementation - memory allocation in stack and heap (video)
- Find min and max element in a binary search tree (video)
- Find height of a binary tree (video)
- Binary tree traversal - breadth-first and depth-first strategies (video)
- Binary tree: Level Order Traversal (video)
- Binary tree traversal: Preorder, Inorder, Postorder (video)
- Check if a binary tree is binary search tree or not (video)
- Delete a node from Binary Search Tree (video)
- Inorder Successor in a binary search tree (video)
- Implement: (구현해볼것들)
- insert // insert value into tree
- get_node_count // get count of values stored
- print_values // prints the values in the tree, from min to max
- delete_tree
- is_in_tree // returns true if given value exists in the tree
- get_height // returns the height in nodes (single node's height is 1)
- get_min // returns the minimum value stored in the tree
- get_max // returns the maximum value stored in the tree
- is_binary_search_tree
- delete_value
- get_successor // returns next-highest value in tree after given value, -1 if none
- Heap / Priority Queue / Binary Heap
- visualized as a tree, but is usually linear in storage (array, linked list)
- Heap
- Introduction (video)
- Naive Implementations (video)
- Binary Trees (video)
- Tree Height Remark (video)
- Basic Operations (video)
- Complete Binary Trees (video)
- Pseudocode (video)
- Heap Sort - jumps to start (video)
- Heap Sort (video)
- Building a heap (video)
- MIT: Heaps and Heap Sort (video)
- CS 61B Lecture 24: Priority Queues (video)
- Linear Time BuildHeap (max-heap)
- Implement a max-heap:
- insert
- sift_up - needed for insert
- get_max - returns the max item, without removing it
- get_size() - return number of elements stored
- is_empty() - returns true if heap contains no elements
- extract_max - returns the max item, removing it
- sift_down - needed for extract_max
- remove(i) - removes item at index x
- heapify - create a heap from an array of elements, needed for heap_sort
- heap_sort() - take an unsorted array and turn it into a sorted array in-place using a max heap
- note: using a min heap instead would save operations, but double the space needed (cannot do in-place).
Sorting
- Notes:
- Implement sorts & know best case/worst case, average complexity of each:
- 구현 종류 및 최상의 사례 / 최악의 경우를 알고, 각각의 평균 복잡성 :
- no bubble sort - it's terrible - O(n^2), except when n <= 16
- stability in sorting algorithms ("Is Quicksort stable?”)
- 정렬 알고리즘의 안정성 ( "Quicksort가 안정적입니까?")
- Sorting Algorithm Stability
- Stability In Sorting Algorithms
- Stability In Sorting Algorithms
- Sorting Algorithms - Stability
- Which algorithms can be used on linked lists? Which on arrays? Which on both?
- 연결된 목록에 어떤 알고리즘을 사용할 수 있습니까? 어떤 배열에있어? 어느쪽에?
- I wouldn't recommend sorting a linked list, but merge sort is doable.
- 나는 연결된 목록을 정렬하는 것을 권장하지 않지만, 병합 정렬은 할 수 있습니다.
- Merge Sort For Linked List
- For heapsort, see Heap data structure above. Heap sort is great, but not stable.
- 힙 톱에 대해서는 위의 힙 데이터 구조를 참조하십시오. 힙 정렬은 훌륭하지만 안정적이지는 않습니다.
- Sedgewick - Mergesort (5 videos)
- Sedgewick - Quicksort (4 videos)
- UC Berkeley:
- CS 61B Lecture 29: Sorting I (video)
- CS 61B Lecture 30: Sorting II (video)
- CS 61B Lecture 32: Sorting III (video)
- CS 61B Lecture 33: Sorting V (video)
- Bubble Sort (video)
- Analyzing Bubble Sort (video)
- Insertion Sort, Merge Sort (video)
- Insertion Sort (video)
- Merge Sort (video)
- Quicksort (video)
- Selection Sort (video)
- Merge sort code:
- Quick sort code:
- Implement:
- Mergesort: O(n log n) average and worst case
- Quicksort O(n log n) average case
- Selection sort and insertion sort are both O(n^2) average and worst case
- For heapsort, see Heap data structure above.
- Not required, but I recommended them:
- 필수 사항은 아니지만 권장 사항 :
- Sedgewick - Radix Sorts (6 videos)
- 1. Strings in Java
- 2. Key Indexed Counting
- 3. Least Significant Digit First String Radix Sort
- 4. Most Significant Digit First String Radix Sort
- 5. 3 Way Radix Quicksort
- 6. Suffix Arrays
- Radix Sort
- Radix Sort (video)
- Radix Sort, Counting Sort (linear time given constraints) (video)
- Randomization: Matrix Multiply, Quicksort, Freivalds' algorithm (video)
- Sorting in Linear Time (video)
If you need more detail on this subject, see "Sorting" section in Additional Detail on Some Subjects
이 주제에 대한 자세한 내용은 일부 주제에 대한 추가 세부 사항의 "정렬"단원을 참조하십시오.
Graphs
Graphs can be used to represent many problems in computer science, so this section is long, like trees and sorting were.
그래프는 컴퓨터 과학의 많은 문제를 나타 내기 위해 사용될 수 있으므로이 섹션은 Tree와 Sort와 같이 길다.
- Notes from Yegge:
- There are three basic ways to represent a graph in memory:
- 메모리에 그래프를 표시하는 세 가지 기본 방법이 있습니다.
- objects and pointers
- matrix
- adjacency list
- Familiarize yourself with each representation and its pros & cons
- BFS and DFS - know their computational complexity, their tradeoffs, and how to implement them in real code
- When asked a question, look for a graph-based solution first, then move on if none.
- 각 표현과 장단점을 숙지하십시오.
- BFS 및 DFS - 계산상의 복잡성, 절충점 및 실제 코드로 구현하는 방법을 알고 있어야합니다.
- 질문을하면 먼저 그래프 기반 솔루션을 찾은 다음 아무 것도하지 않으면 계속 진행합니다.
- Skiena Lectures - great intro:
- CSE373 2012 - Lecture 11 - Graph Data Structures (video)
- CSE373 2012 - Lecture 12 - Breadth-First Search (video)
- CSE373 2012 - Lecture 13 - Graph Algorithms (video)
- CSE373 2012 - Lecture 14 - Graph Algorithms (con't) (video)
- CSE373 2012 - Lecture 15 - Graph Algorithms (con't 2) (video)
- CSE373 2012 - Lecture 16 - Graph Algorithms (con't 3) (video)
- Graphs (review and more):
- 6.006 Single-Source Shortest Paths Problem (video)
- 6.006 Dijkstra (video)
- 6.006 Bellman-Ford (video)
- 6.006 Speeding Up Dijkstra (video)
- Aduni: Graph Algorithms I - Topological Sorting, Minimum Spanning Trees, Prim's Algorithm - Lecture 6 (video)
- Aduni: Graph Algorithms II - DFS, BFS, Kruskal's Algorithm, Union Find Data Structure - Lecture 7 (video)
- Aduni: Graph Algorithms III: Shortest Path - Lecture 8 (video)
- Aduni: Graph Alg. IV: Intro to geometric algorithms - Lecture 9 (video)
- CS 61B 2014 (starting at 58:09) (video)
- CS 61B 2014: Weighted graphs (video)
- Greedy Algorithms: Minimum Spanning Tree (video)
- Strongly Connected Components Kosaraju's Algorithm Graph Algorithm (video)
- Full Coursera Course:
- Yegge: If you get a chance, try to study up on fancier algorithms:
- Yegge : 기회가 생기면 더 멋진 알고리즘을 연구 해보십시오.
- Dijkstra's algorithm - see above - 6.006
- A*
- I'll implement: (내가 구현할 것들)
- DFS with adjacency list (recursive)
- DFS with adjacency list (iterative with stack)
- DFS with adjacency matrix (recursive)
- DFS with adjacency matrix (iterative with stack)
- BFS with adjacency list
- BFS with adjacency matrix
- single-source shortest path (Dijkstra)
- minimum spanning tree
- DFS-based algorithms (see Aduni videos above):
- check for cycle (needed for topological sort, since we'll check for cycle before starting)
- topological sort
- count connected components in a graph
- list strongly connected components
- check for bipartite graph
- 사이클을 확인하십시오 (토폴로지 정렬에 필요합니다. 시작하기 전에 사이클을 확인할 것입니다)
- 토폴로지 정렬
- 연결된 구성 요소를 그래프로 계산
- 강하게 연결된 구성 요소를 나열하십시오.
- 이분 그래프를 확인
You'll get more graph practice in Skiena's book (see Books section below) and the interview books
Even More Knowledge
- Recursion (재귀)
- Stanford lectures on recursion & backtracking:
- Lecture 8 | Programming Abstractions (video)
- Lecture 9 | Programming Abstractions (video)
- Lecture 10 | Programming Abstractions (video)
- Lecture 11 | Programming Abstractions (video)
- when it is appropriate to use it
- how is tail recursion better than not?
- Dynamic Programming (동적프로그래밍)
- NOTE: DP is a valuable technique, but it is not mentioned on any of the prep material Google provides. But you could get a problem where DP provides an optimal solution. So I'm including it.
- This subject can be pretty difficult, as each DP soluble problem must be defined as a recursion relation, and coming up with it can be tricky.
- I suggest looking at many examples of DP problems until you have a solid understanding of the pattern involved.
- 참고 : DP는 중요한 기술이지만 Google에서 제공하는 사전 준비 자료에는 언급되어 있지 않습니다. 그러나 DP가 최적의 솔루션을 제공하는 데 문제가 발생할 수 있습니다. 그래서 나는 그것을 포함시키고있다.
- 이 주제는 각 DP 용해성 문제가 재귀 관계로 정의되어야하므로 까다로울 수 있으므로 상당히 어려울 수 있습니다.
- 나는 관련된 패턴에 대한 확실한 이해가있을 때까지 DP 문제의 많은 예를 살펴볼 것을 제안한다.
- Videos:
- the Skiena videos can be hard to follow since he sometimes uses the whiteboard, which is too small to see
- Skiena: CSE373 2012 - Lecture 19 - Introduction to Dynamic Programming (video)
- Skiena: CSE373 2012 - Lecture 20 - Edit Distance (video)
- Skiena: CSE373 2012 - Lecture 21 - Dynamic Programming Examples (video)
- Skiena: CSE373 2012 - Lecture 22 - Applications of Dynamic Programming (video)
- Simonson: Dynamic Programming 0 (starts at 59:18) (video)
- Simonson: Dynamic Programming I - Lecture 11 (video)
- Simonson: Dynamic programming II - Lecture 12 (video)
- List of individual DP problems (each is short): Dynamic Programming (video)
- Yale Lecture notes:
- Coursera:
- Object-Oriented Programming (객체지향 프로그래밍)
- Optional: UML 2.0 Series (video)
- Object-Oriented Software Engineering: Software Dev Using UML and Java (21 videos):
- Can skip this if you have a great grasp of OO and OO design practices.
- OO 및 OO 설계 관행을 잘 이해하면이 작업을 건너 뛸 수 있습니다.
- OOSE: Software Dev Using UML and Java
- SOLID OOP Principles:
- SOLID OOP 원칙 :
- Bob Martin SOLID Principles of Object Oriented and Agile Design (video)
- SOLID Design Patterns in C# (video)
- SOLID Principles (video)
- S - Single Responsibility Principle | Single responsibility to each Object
- O - Open/Closed Principal | On production level Objects are ready for extension for not for modification
- L - Liskov Substitution Principal | Base Class and Derived class follow ‘IS A’ principal
- I - Interface segregation principle | clients should not be forced to implement interfaces they don't use
- D -Dependency Inversion principle | Reduce the dependency In composition of objects.
- Design patterns (디자인 패턴)
- Quick UML review (video)
- Learn these patterns:
- strategy
- singleton
- adapter
- prototype
- decorator
- visitor
- factory, abstract factory
- facade
- observer
- proxy
- delegate
- command
- state
- memento
- iterator
- composite
- flyweight
- Chapter 6 (Part 1) - Patterns (video)
- Chapter 6 (Part 2) - Abstraction-Occurrence, General Hierarchy, Player-Role, Singleton, Observer, Delegation (video)
- Chapter 6 (Part 3) - Adapter, Facade, Immutable, Read-Only Interface, Proxy (video)
- Series of videos (27 videos)
- Head First Design Patterns
- I know the canonical book is "Design Patterns: Elements of Reusable Object-Oriented Software", but Head First is great for beginners to OO.
- Handy reference: 101 Design Patterns & Tips for Developers
- Combinatorics (n choose k) & Probability (조합법 (n을 k로 선택) 및 확률)
- Math Skills: How to find Factorial, Permutation and Combination (Choose) (video)
- Make School: Probability (video)
- Make School: More Probability and Markov Chains (video)
- Khan Academy:
- Course layout:
- Just the videos - 41 (each are simple and each are short):
- NP, NP-Complete and Approximation Algorithms (NP, NP- 완전 및 근사 알고리즘)
- Know about the most famous classes of NP-complete problems, such as traveling salesman and the knapsack problem, and be able to recognize them when an interviewer asks you them in disguise.
- Know what NP-complete means.
- 면접 원이 변장을 요구할 때 세일즈맨 및 배낭 문제와 같은 NP- 완전 문제의 가장 유명한 클래스에 대해 알 고이를 인식 할 수 있습니다.
- NP 완성이란 무엇을 의미하는지 파악하십시오.
- Computational Complexity (video)
- Simonson:
- Greedy Algs. II & Intro to NP Completeness (video)
- NP Completeness II & Reductions (video)
- NP Completeness III (Video)
- NP Completeness IV (video)
- Skiena:
- CSE373 2012 - Lecture 23 - Introduction to NP-Completeness (video)
- CSE373 2012 - Lecture 24 - NP-Completeness Proofs (video)
- CSE373 2012 - Lecture 25 - NP-Completeness Challenge (video)
- Complexity: P, NP, NP-completeness, Reductions (video)
- Complexity: Approximation Algorithms (video)
- Complexity: Fixed-Parameter Algorithms (video)
- Peter Norvig discusses near-optimal solutions to traveling salesman problem:
- Pages 1048 - 1140 in CLRS if you have it.
- Caches (캐쉬)
- LRU cache:
- The Magic of LRU Cache (100 Days of Google Dev) (video)
- Implementing LRU (video)
- LeetCode - 146 LRU Cache (C++) (video)
- CPU cache:
- Processes and Threads (프로세스와 스레드)
- Computer Science 162 - Operating Systems (25 videos):
- for processes and threads see videos 1-11
- Operating Systems and System Programming (video)
- What Is The Difference Between A Process And A Thread?
- Covers:
- Processes, Threads, Concurrency issues
- difference between processes and threads
- processes
- threads
- locks
- mutexes
- semaphores
- monitors
- how they work
- deadlock
- livelock
- CPU activity, interrupts, context switching
- Modern concurrency constructs with multicore processors
- Process resource needs (memory: code, static storage, stack, heap, and also file descriptors, i/o)
- Thread resource needs (shares above (minus stack) with other threads in the same process but each has its own pc, stack counter, registers, and stack)
- Forking is really copy on write (read-only) until the new process writes to memory, then it does a full copy.
- CPU 활동, 인터럽트, 컨텍스트 스위칭
- 멀티 코어 프로세서를 사용한 현대 동시성 구조
- 프로세스 자원 요구 사항 (메모리 : 코드, 정적 저장소, 스택, 힙 및 파일 설명자, I / O)
- 스레드 자원 요구 (같은 프로세스에서 다른 스레드와 위의 (공유 빼기)를 공유하지만 각각 자신의 PC, 스택 카운터, 레지스터 및 스택을 가짐)
- 새 프로세스가 메모리에 쓸 때까지 포킹은 실제로 쓰기 (읽기 전용) 상태로 복사됩니다. 그러면 전체 복사가 수행됩니다.
- Context switching (컨텍스트 스위칭)
- How context switching is initiated by the operating system and underlying hardware
- 운영 체제 및 기본 하드웨어에서 컨텍스트 전환을 시작하는 방법
- threads in C++ (series - 10 videos)
- concurrency in Python (videos):
- Papers (논문)
- These are Google papers and well-known papers.
- Reading all from end to end with full comprehension will likely take more time than you have. I recommend being selective on papers and their sections.
- 이들은 Google 논문과 잘 알려진 논문입니다.
- 완전한 이해력으로 끝에서 끝까지 모두를 읽는 것은 아마도 당신보다 더 많은 시간이 걸릴 것입니다. 나는 논문과 그들의 섹션에 대해 선택하는 것이 좋습니다.
- 1978: Communicating Sequential Processes
- 2003: The Google File System
- replaced by Colossus in 2012
- 2004: MapReduce: Simplified Data Processing on Large Clusters
- mostly replaced by Cloud Dataflow?
- 2006: Bigtable: A Distributed Storage System for Structured Data
- 2006: The Chubby Lock Service for Loosely-Coupled Distributed Systems
- 2007: What Every Programmer Should Know About Memory (very long, and the author encourages skipping of some sections)
- 2010: Dapper, a Large-Scale Distributed Systems Tracing Infrastructure
- 2010: Dremel: Interactive Analysis of Web-Scale Datasets
- 2012: Google's Colossus
- paper not available
- 2012: AddressSanitizer: A Fast Address Sanity Checker:
- 2013: Spanner: Google’s Globally-Distributed Database:
- 2014: Machine Learning: The High-Interest Credit Card of Technical Debt
- 2015: Continuous Pipelines at Google
- 2015: High-Availability at Massive Scale: Building Google’s Data Infrastructure for Ads
- 2015: TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems
- 2015: How Developers Search for Code: A Case Study
- 2016: Borg, Omega, and Kubernetes
- Testing (테스트)
- To cover:
- how unit testing works
- what are mock objects
- what is integration testing
- what is dependency injection
- 단위 테스트의 작동 방식
- 모의 객체 란 무엇인가?
- 통합 테스트 란 무엇인가?
- 의존성 주입이란 무엇인가?
- Agile Software Testing with James Bach (video)
- Open Lecture by James Bach on Software Testing (video)
- Steve Freeman - Test-Driven Development (that’s not what we meant) (video)
- TDD is dead. Long live testing.
- Is TDD dead? (video)
- Video series (152 videos) - not all are needed (video)
- Test-Driven Web Development with Python
- Dependency injection:
- How to write tests
- Scheduling (스케쥴링)
- in an OS, how it works
- can be gleaned from Operating System videos
- 운영 체제에서 작동 방식
- 운영 체제 비디오에서 수집 할 수 있습니다.
- Implement system routines (시스템 루틴 구현)
- understand what lies beneath the programming APIs you use
- can you implement them?
- 사용하는 프로그래밍 API 아래에 무엇이 있는지 이해하십시오.
- 그들을 구현할 수 있습니까?
- String searching & manipulationsIf you need more detail on this subject, see "String Matching" section in Additional Detail on Some Subjects
- 문자열 검색 및 조작이 주제에 대한 자세한 내용이 필요하면 일부 주제에 대한 추가 세부 사항의 "문자열 일치"섹션을 참조하십시오.
System Design, Scalability, Data Handling
- You can expect system design questions if you have 4+ years of experience.
- Scalability and System Design are very large topics with many topics and resources, since there is a lot to consider when designing a software/hardware system that can scale. Expect to spend quite a bit of time on this.
- 4 년 이상의 경험이 있으면 시스템 설계 질문을 기대할 수 있습니다.
- 확장 성 및 시스템 설계는 많은 주제와 리소스가 포함 된 매우 큰 주제입니다. 확장 가능한 소프트웨어 / 하드웨어 시스템을 설계 할 때 고려해야 할 사항이 많기 때문입니다. 이것에 대해 상당한 시간을 할애 할 것으로 예상하십시오.
- Considerations from Yegge:
- Yegge의 고려 사항 :
- scalability (확장성)
- Distill large data sets to single values
- Transform one data set to another
- Handling obscenely large amounts of data
- 큰 데이터 세트를 단일 값으로 증류
- 한 데이터 세트를 다른 데이터 세트로 변환
- 엄청나게 많은 양의 데이터 처리
- system design
- features sets
- interfaces
- class hierarchies
- designing a system under certain constraints
- simplicity and robustness
- tradeoffs
- performance analysis and optimization
- 기능 집합
- 인터페이스들
- 계층 구조
- 특정 제약 조건 하에서 시스템 설계
- 단순성과 견고성
- 상충 관계
- 성능 분석 및 최적화
- START HERE: System Design from HiredInTech
- How Do I Prepare To Answer Design Questions In A Technical Inverview?
- 8 Things You Need to Know Before a System Design Interview
- Algorithm design
- Database Normalization - 1NF, 2NF, 3NF and 4NF (video)
- System Design Interview - There are a lot of resources in this one. Look through the articles and examples. I put some of them below.
- How to ace a systems design interview
- Numbers Everyone Should Know
- How long does it take to make a context switch?
- Transactions Across Datacenters (video)
- A plain English introduction to CAP Theorem
- Paxos Consensus algorithm:
- Consistent Hashing
- NoSQL Patterns
- Scalability:
- Great overview (video)
- Short series:
- Scalable Web Architecture and Distributed Systems
- Fallacies of Distributed Computing Explained
- Pragmatic Programming Techniques
- Jeff Dean - Building Software Systems At Google and Lessons Learned (video)
- Introduction to Architecting Systems for Scale
- Scaling mobile games to a global audience using App Engine and Cloud Datastore (video)
- How Google Does Planet-Scale Engineering for Planet-Scale Infra (video)
- The Importance of Algorithms
- Sharding
- Scale at Facebook (2009)
- Scale at Facebook (2012), "Building for a Billion Users" (video)
- Engineering for the Long Game - Astrid Atkinson Keynote(video)
- 7 Years Of YouTube Scalability Lessons In 30 Minutes
- How PayPal Scaled To Billions Of Transactions Daily Using Just 8VMs
- How to Remove Duplicates in Large Datasets
- A look inside Etsy's scale and engineering culture with Jon Cowie (video)
- What Led Amazon to its Own Microservices Architecture
- To Compress Or Not To Compress, That Was Uber's Question
- Asyncio Tarantool Queue, Get In The Queue
- When Should Approximate Query Processing Be Used?
- Google's Transition From Single Datacenter, To Failover, To A Native Multihomed Architecture
- Spanner
- Egnyte Architecture: Lessons Learned In Building And Scaling A Multi Petabyte Distributed System
- Machine Learning Driven Programming: A New Programming For A New World
- The Image Optimization Technology That Serves Millions Of Requests Per Day
- A Patreon Architecture Short
- Tinder: How Does One Of The Largest Recommendation Engines Decide Who You'll See Next?
- Design Of A Modern Cache
- Live Video Streaming At Facebook Scale
- A Beginner's Guide To Scaling To 11 Million+ Users On Amazon's AWS
- How Does The Use Of Docker Effect Latency?
- Does AMP Counter An Existential Threat To Google?
- A 360 Degree View Of The Entire Netflix Stack
- Latency Is Everywhere And It Costs You Sales - How To Crush It
- Serverless (very long, just need the gist)
- What Powers Instagram: Hundreds of Instances, Dozens of Technologies
- Cinchcast Architecture - Producing 1,500 Hours Of Audio Every Day
- Justin.Tv's Live Video Broadcasting Architecture
- Playfish's Social Gaming Architecture - 50 Million Monthly Users And Growing
- TripAdvisor Architecture - 40M Visitors, 200M Dynamic Page Views, 30TB Data
- PlentyOfFish Architecture
- Salesforce Architecture - How They Handle 1.3 Billion Transactions A Day
- ESPN's Architecture At Scale - Operating At 100,000 Duh Nuh Nuhs Per Second
- See "Messaging, Serialization, and Queueing Systems" way below for info on some of the technologies that can glue services together
- 서비스를 함께 붙일 수있는 몇 가지 기술에 대한 정보는 아래의 "메시징, 직렬화 및 대기열 시스템"을 참조하십시오.
- Twitter:
- For even more, see "Mining Massive Datasets" video series in the Video Series section.
- 더 자세한 내용은 비디오 시리즈 섹션의 "Mining Massive Datasets"비디오 시리즈를 참조하십시오.
- Practicing the system design process: Here are some ideas to try working through on paper, each with some documentation on how it was handled in the real world:
- 시스템 설계 프로세스 실습 : 다음은 종이로 작업 해보는 몇 가지 아이디어입니다. 각 아이디어는 현실 세계에서 어떻게 처리되었는지에 대한 문서를 가지고 있습니다.
- review: System Design from HiredInTech
- cheat sheet
- flow:
- Understand the problem and scope: (문제와 범위 이해)
- define the use cases, with interviewer's help
- suggest additional features
- remove items that interviewer deems out of scope
- assume high availability is required, add as a use case
- 인터뷰 담당자의 도움을 받아 유스 케이스를 정의한다.
- 추가 기능 제안
- 면접관이 범위를 벗어난 것으로 간주하는 항목 제거
- 고 가용성이 필요하다고 가정하고 유스 케이스로 추가
- Think about constraints: (제약에 대해 생각해보십시오.)
- ask how many requests per month
- ask how many requests per second (they may volunteer it or make you do the math)
- estimate reads vs. writes percentage
- keep 80/20 rule in mind when estimating
- how much data written per second
- total storage required over 5 years
- how much data read per second
- 한 달에 얼마나 많은 요청을하는지 물어보십시오.
- 초당 요청 수를 물어보십시오 (자원 봉사를하거나 수학을 할 수 있습니다)
- 예상 읽기와 쓰기 비율
- 예상 할 때 80/20 규칙을 명심하십시오.
- 초당 쓰여지는 데이터의 양
- 총 저장 용량은 5 년 이상 필요합니다.
- 초당 읽는 데이터 양
- Abstract design (추상 디자인):
- layers (service, data, caching)
- infrastructure: load balancing, messaging
- rough overview of any key algorithm that drives the service
- consider bottlenecks and determine solutions
- 레이어 (서비스, 데이터, 캐싱)
- 인프라 :로드 균형 조정, 메시징
- 서비스를 구동하는 핵심 알고리즘의 대략적인 개요
- 병목 현상을 고려하고 해결책을 결정한다.
- Exercises:
Final Review
normalThis section will have shorter videos that you can watch pretty quickly to review most of the important concepts.
It's nice if you want a refresher often.
normal
It's nice if you want a refresher often.
normal
- Series of 2-3 minutes short subject videos (23 videos)
- Series of 2-5 minutes short subject videos - Michael Sambol (18 videos):
- Sedgewick Videos - Algorithms I
- 01. Union-Find
- 02. Analysis of Algorithms
- 03. Stacks and Queues
- 04. Elementary Sorts
- 05. Mergesort
- 06. Quicksort
- 07. Priority Queues
- 08. Elementary Symbol Tables
- 09. Balanced Search Trees
- 10. Geometric Applications of BST
- 11. Hash Tables
- Sedgewick Videos - Algorithms II
Coding Question Practice
Now that you know all the computer science topics above, it's time to practice answering coding problems.
Coding question practice is not about memorizing answers to programming problems.
Why you need to practice doing programming problems:
- problem recognition, and where the right data structures and algorithms fit in
- gathering requirements for the problem
- talking your way through the problem like you will in the interview
- coding on a whiteboard or paper, not a computer
- coming up with time and space complexity for your solutions
- testing your solutions
There is a great intro for methodical, communicative problem solving in an interview. You'll get this from the programming interview books, too, but I found this outstanding: Algorithm design canvas
No whiteboard at home? That makes sense. I'm a weirdo and have a big whiteboard. Instead of a whiteboard, pick up a large drawing pad from an art store. You can sit on the couch and practice. This is my "sofa whiteboard". I added the pen in the photo for scale. If you use a pen, you'll wish you could erase. Gets messy quick.
Supplemental:
- Mathematics for Topcoders
- Dynamic Programming – From Novice to Advanced
- MIT Interview Materials
- Exercises for getting better at a given language
Read and Do Programming Problems (in this order):
- Programming Interviews Exposed: Secrets to Landing Your Next Job, 2nd Edition
- answers in C, C++ and Java
- Cracking the Coding Interview, 6th Edition
- answers in Java
See Book List above
Coding exercises/challenges
Once you've learned your brains out, put those brains to work. Take coding challenges every day, as many as you can.
Challenge sites:
- LeetCode
- TopCoder
- Project Euler (math-focused)
- Codewars
- HackerRank
- Codility
- InterviewCake
- Geeks for Geeks
- InterviewBit
Maybe:
Once you're closer to the interview
- Cracking The Coding Interview Set 2 (videos):
Your Resume
- Ten Tips for a (Slightly) Less Awful Resume
- See Resume prep items in Cracking The Coding Interview and back of Programming Interviews Exposed
Be thinking of for when the interview comes
Think of about 20 interview questions you'll get, along with the lines of the items below. Have 2-3 answers for each. Have a story, not just data, about something you accomplished.
- Why do you want this job?
- What's a tough problem you've solved?
- Biggest challenges faced?
- Best/worst designs seen?
- Ideas for improving an existing Google product.
- How do you work best, as an individual and as part of a team?
- Which of your skills or experiences would be assets in the role and why?
- What did you most enjoy at [job x / project y]?
- What was the biggest challenge you faced at [job x / project y]?
- What was the hardest bug you faced at [job x / project y]?
- What did you learn at [job x / project y]?
- What would you have done better at [job x / project y]?
Have questions for the interviewer
normalSome of mine (I already may know answer to but want their opinion or team perspective):
normal
normal
- How large is your team?
- What does your dev cycle look like? Do you do waterfall/sprints/agile?
- Are rushes to deadlines common? Or is there flexibility?
- How are decisions made in your team?
- How many meetings do you have per week?
- Do you feel your work environment helps you concentrate?
- What are you working on?
- What do you like about it?
- What is the work life like?
Once You've Got The Job
Congratulations!
Keep learning.
You're never really done.
normal*****************************************************************************************************
*****************************************************************************************************
Everything below this point is optional. These are my recommendations, not Google's.
By studying these, you'll get greater exposure to more CS concepts, and will be better prepared for
any software engineering job. You'll be a much more well-rounded software engineer.
*****************************************************************************************************
*****************************************************************************************************
normal
*****************************************************************************************************
Everything below this point is optional. These are my recommendations, not Google's.
By studying these, you'll get greater exposure to more CS concepts, and will be better prepared for
any software engineering job. You'll be a much more well-rounded software engineer.
*****************************************************************************************************
*****************************************************************************************************
normal
Additional Books
- The Unix Programming Environment
- an oldie but a goodie
- The Linux Command Line: A Complete Introduction
- a modern option
- TCP/IP Illustrated Series
- Head First Design Patterns
- a gentle introduction to design patterns
- Design Patterns: Elements of Reusable Object-Oriented Software
- aka the "Gang Of Four" book, or GOF
- the canonical design patterns book
- Site Reliability Engineering
- UNIX and Linux System Administration Handbook, 4th Edition
Additional Learning
- Compilers
- How a Compiler Works in ~1 minute (video)
- Harvard CS50 - Compilers (video)
- C++ (video)
- Understanding Compiler Optimization (C++) (video)
- Floating Point Numbers
- simple 8-bit: Representation of Floating Point Numbers - 1 (video - there is an error in calculations - see video description)
- 32 bit: IEEE754 32-bit floating point binary (video)
- Unicode
- The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Character Sets
- What Every Programmer Absolutely, Positively Needs To Know About Encodings And Character Sets To Work With Text
- Endianness
- Big And Little Endian
- Big Endian Vs Little Endian (video)
- Big And Little Endian Inside/Out (video)
- Very technical talk for kernel devs. Don't worry if most is over your head.
- The first half is enough.
- Emacs and vi(m)
- suggested by Yegge, from an old Amazon recruiting post: Familiarize yourself with a unix-based code editor
- vi(m):
- Editing With vim 01 - Installation, Setup, and The Modes (video)
- VIM Adventures
- set of 4 videos:
- The vi/vim editor - Lesson 1
- The vi/vim editor - Lesson 2
- The vi/vim editor - Lesson 3
- The vi/vim editor - Lesson 4
- Using Vi Instead of Emacs
- emacs:
- Basics Emacs Tutorial (video)
- set of 3 (videos):
- Emacs Tutorial (Beginners) -Part 1- File commands, cut/copy/paste, cursor commands
- Emacs Tutorial (Beginners) -Part 2- Buffer management, search, M-x grep and rgrep modes
- Emacs Tutorial (Beginners) -Part 3- Expressions, Statements, ~/.emacs file and packages
- Evil Mode: Or, How I Learned to Stop Worrying and Love Emacs (video)
- Writing C Programs With Emacs
- (maybe) Org Mode In Depth: Managing Structure (video)
- Unix command line tools
- suggested by Yegge, from an old Amazon recruiting post. I filled in the list below from good tools.
- bash
- cat
- grep
- sed
- awk
- curl or wget
- sort
- tr
- uniq
- strace
- tcpdump
- Information theory (videos)
- Khan Academy
- more about Markov processes:
- Core Markov Text Generation
- Core Implementing Markov Text Generation
- Project = Markov Text Generation Walk Through
- See more in MIT 6.050J Information and Entropy series below.
- Parity & Hamming Code (videos)
- Intro
- Parity
- Hamming Code:
- Error Checking
- Entropy
- also see videos below
- make sure to watch information theory videos first
- Information Theory, Claude Shannon, Entropy, Redundancy, Data Compression & Bits (video)
- Cryptography
- also see videos below
- make sure to watch information theory videos first
- Khan Academy Series
- Cryptography: Hash Functions
- Cryptography: Encryption
- Compression
- make sure to watch information theory videos first
- Computerphile (videos):
- Compression
- Entropy in Compression
- Upside Down Trees (Huffman Trees)
- EXTRA BITS/TRITS - Huffman Trees
- Elegant Compression in Text (The LZ 77 Method)
- Text Compression Meets Probabilities
- Compressor Head videos
- (optional) Google Developers Live: GZIP is not enough!
- Networking
- if you have networking experience or want to be a systems engineer, expect questions
- otherwise, this is just good to know
- Khan Academy
- UDP and TCP: Comparison of Transport Protocols
- TCP/IP and the OSI Model Explained!
- Packet Transmission across the Internet. Networking & TCP/IP tutorial.
- HTTP
- SSL and HTTPS
- SSL/TLS
- HTTP 2.0
- Video Series (21 videos)
- Subnetting Demystified - Part 5 CIDR Notation
- Computer Security
- Garbage collection
- Garbage collection (Java); Augmenting data str (video)
- Compilers (video)
- GC in Python (video)
- Deep Dive Java: Garbage Collection is Good!
- Deep Dive Python: Garbage Collection in CPython (video)
- Parallel Programming
- Messaging, Serialization, and Queueing Systems
- Thrift
- Protocol Buffers
- gRPC
- Redis
- Amazon SQS (queue)
- Amazon SNS (pub-sub)
- RabbitMQ
- Celery
- ZeroMQ
- ActiveMQ
- Kafka
- MessagePack
- Avro
- Fast Fourier Transform
- An Interactive Guide To The Fourier Transform
- What is a Fourier transform? What is it used for?
- What is the Fourier Transform? (video)
- Divide & Conquer: FFT (video)
- Understanding The FFT
- Bloom Filter
- Given a Bloom filter with m bits and k hashing functions, both insertion and membership testing are O(k)
- Bloom Filters
- Bloom Filters | Mining of Massive Datasets | Stanford University
- Tutorial
- How To Write A Bloom Filter App
- HyperLogLog
- Locality-Sensitive Hashing
- used to determine the similarity of documents
- the opposite of MD5 or SHA which are used to determine if 2 documents/strings are exactly the same.
- Simhashing (hopefully) made simple
- van Emde Boas Trees
- Augmented Data Structures
- Tries
- Note there are different kinds of tries. Some have prefixes, some don't, and some use string instead of bits to track the path.
- I read through code, but will not implement.
- Sedgewick - Tries (3 videos)
- Notes on Data Structures and Programming Techniques
- Short course videos:
- The Trie: A Neglected Data Structure
- TopCoder - Using Tries
- Stanford Lecture (real world use case) (video)
- MIT, Advanced Data Structures, Strings (can get pretty obscure about halfway through)
- Balanced search trees
- Know least one type of balanced binary tree (and know how it's implemented):
- "Among balanced search trees, AVL and 2/3 trees are now passé, and red-black trees seem to be more popular. A particularly interesting self-organizing data structure is the splay tree, which uses rotations to move any accessed key to the root." - Skiena
- Of these, I chose to implement a splay tree. From what I've read, you won't implement a balanced search tree in your interview. But I wanted exposure to coding one up and let's face it, splay trees are the bee's knees. I did read a lot of red-black tree code.
- splay tree: insert, search, delete functions If you end up implementing red/black tree try just these:
- search and insertion functions, skipping delete
- I want to learn more about B-Tree since it's used so widely with very large data sets.
- Self-balancing binary search tree
- AVL trees
- In practice: From what I can tell, these aren't used much in practice, but I could see where they would be: The AVL tree is another structure supporting O(log n) search, insertion, and removal. It is more rigidly balanced than red–black trees, leading to slower insertion and removal but faster retrieval. This makes it attractive for data structures that may be built once and loaded without reconstruction, such as language dictionaries (or program dictionaries, such as the opcodes of an assembler or interpreter).
- MIT AVL Trees / AVL Sort (video)
- AVL Trees (video)
- AVL Tree Implementation (video)
- Split And Merge
- Splay trees
- In practice: Splay trees are typically used in the implementation of caches, memory allocators, routers, garbage collectors, data compression, ropes (replacement of string used for long text strings), in Windows NT (in the virtual memory, networking and file system code) etc.
- CS 61B: Splay Trees (video)
- MIT Lecture: Splay Trees:
- Gets very mathy, but watch the last 10 minutes for sure.
- Video
- Red/black trees
- these are a translation of a 2-3 tree (see below)
- In practice: Red–black trees offer worst-case guarantees for insertion time, deletion time, and search time. Not only does this make them valuable in time-sensitive applications such as real-time applications, but it makes them valuable building blocks in other data structures which provide worst-case guarantees; for example, many data structures used in computational geometry can be based on red–black trees, and the Completely Fair Scheduler used in current Linux kernels uses red–black trees. In the version 8 of Java, the Collection HashMap has been modified such that instead of using a LinkedList to store identical elements with poor hashcodes, a Red-Black tree is used.
- Aduni - Algorithms - Lecture 4 (link jumps to starting point) (video)
- Aduni - Algorithms - Lecture 5 (video)
- Black Tree
- An Introduction To Binary Search And Red Black Tree
- 2-3 search trees
- In practice: 2-3 trees have faster inserts at the expense of slower searches (since height is more compared to AVL trees).
- You would use 2-3 tree very rarely because its implementation involves different types of nodes. Instead, people use Red Black trees.
- 23-Tree Intuition and Definition (video)
- Binary View of 23-Tree
- 2-3 Trees (student recitation) (video)
- 2-3-4 Trees (aka 2-4 trees)
- In practice: For every 2-4 tree, there are corresponding red–black trees with data elements in the same order. The insertion and deletion operations on 2-4 trees are also equivalent to color-flipping and rotations in red–black trees. This makes 2-4 trees an important tool for understanding the logic behind red–black trees, and this is why many introductory algorithm texts introduce 2-4 trees just before red–black trees, even though 2-4 trees are not often used in practice.
- CS 61B Lecture 26: Balanced Search Trees (video)
- Bottom Up 234-Trees (video)
- Top Down 234-Trees (video)
- N-ary (K-ary, M-ary) trees
- note: the N or K is the branching factor (max branches)
- binary trees are a 2-ary tree, with branching factor = 2
- 2-3 trees are 3-ary
- K-Ary Tree
- B-Trees
- fun fact: it's a mystery, but the B could stand for Boeing, Balanced, or Bayer (co-inventor)
- In Practice: B-Trees are widely used in databases. Most modern filesystems use B-trees (or Variants). In addition to its use in databases, the B-tree is also used in filesystems to allow quick random access to an arbitrary block in a particular file. The basic problem is turning the file block i address into a disk block (or perhaps to a cylinder-head-sector) address.
- B-Tree
- Introduction to B-Trees (video)
- B-Tree Definition and Insertion (video)
- B-Tree Deletion (video)
- MIT 6.851 - Memory Hierarchy Models (video) - covers cache-oblivious B-Trees, very interesting data structures - the first 37 minutes are very technical, may be skipped (B is block size, cache line size)
- k-D Trees
- great for finding number of points in a rectangle or higher dimension object
- a good fit for k-nearest neighbors
- Kd Trees (video)
- kNN K-d tree algorithm (video)
- Skip lists
- "These are somewhat of a cult data structure" - Skiena
- Randomization: Skip Lists (video)
- For animations and a little more detail
- Network Flows
- Disjoint Sets & Union Find
- Math for Fast Processing
- Integer Arithmetic, Karatsuba Multiplication (video)
- The Chinese Remainder Theorem (used in cryptography) (video)
- Treap
- Combination of a binary search tree and a heap
- Treap
- Data Structures: Treaps explained (video)
- Applications in set operations
- Linear Programming (videos)
- Linear Programming
- Finding minimum cost
- Finding maximum value
- Solve Linear Equations with Python - Simplex Algorithm
- Geometry, Convex hull (videos)
- Graph Alg. IV: Intro to geometric algorithms - Lecture 9
- Geometric Algorithms: Graham & Jarvis - Lecture 10
- Divide & Conquer: Convex Hull, Median Finding
- Discrete math
- see videos below
- Machine Learning
- Why ML?
- How Google Is Remaking Itself As A Machine Learning First Company
- Large-Scale Deep Learning for Intelligent Computer Systems (video)
- Deep Learning and Understandability versus Software Engineering and Verification by Peter Norvig
- Google's Cloud Machine learning tools (video)
- Google Developers' Machine Learning Recipes (Scikit Learn & Tensorflow) (video)
- Tensorflow (video)
- Tensorflow Tutorials
- Practical Guide to implementing Neural Networks in Python (using Theano)
- Courses:
- Great starter course: Machine Learning
- videos only
- see videos 12-18 for a review of linear algebra (14 and 15 are duplicates)
- Neural Networks for Machine Learning
- Google's Deep Learning Nanodegree
- Google/Kaggle Machine Learning Engineer Nanodegree
- Self-Driving Car Engineer Nanodegree
- Metis Online Course ($99 for 2 months)
- Resources:
- Go
Additional Detail on Some Subjects
normalI added these to reinforce some ideas already presented above, but didn't want to include them
above because it's just too much. It's easy to overdo it on a subject.
You want to get hired in this century, right?
normal
above because it's just too much. It's easy to overdo it on a subject.
You want to get hired in this century, right?
normal
- Union-Find
- More Dynamic Programming (videos)
- 6.006: Dynamic Programming I: Fibonacci, Shortest Paths
- 6.006: Dynamic Programming II: Text Justification, Blackjack
- 6.006: DP III: Parenthesization, Edit Distance, Knapsack
- 6.006: DP IV: Guitar Fingering, Tetris, Super Mario Bros.
- 6.046: Dynamic Programming & Advanced DP
- 6.046: Dynamic Programming: All-Pairs Shortest Paths
- 6.046: Dynamic Programming (student recitation)
- Advanced Graph Processing (videos)
- Synchronous Distributed Algorithms: Symmetry-Breaking. Shortest-Paths Spanning Trees
- Asynchronous Distributed Algorithms: Shortest-Paths Spanning Trees
- MIT Probability (mathy, and go slowly, which is good for mathy things) (videos):
- MIT 6.042J - Probability Introduction
- MIT 6.042J - Conditional Probability
- MIT 6.042J - Independence
- MIT 6.042J - Random Variables
- MIT 6.042J - Expectation I
- MIT 6.042J - Expectation II
- MIT 6.042J - Large Deviations
- MIT 6.042J - Random Walks
- Simonson: Approximation Algorithms (video)
- String Matching
- Rabin-Karp (videos):
- Rabin Karps Algorithm
- Precomputing
- Optimization: Implementation and Analysis
- Table Doubling, Karp-Rabin
- Rolling Hashes, Amortized Analysis
- Knuth-Morris-Pratt (KMP):
- Boyer–Moore string search algorithm
- Boyer-Moore String Search Algorithm
- Advanced String Searching Boyer-Moore-Horspool Algorithms (video)
- Coursera: Algorithms on Strings
- starts off great, but by the time it gets past KMP it gets more complicated than it needs to be
- nice explanation of tries
- can be skipped
- Sorting
- Stanford lectures on sorting:
- Shai Simonson, Aduni.org:
- Steven Skiena lectures on sorting:
Video Series
Sit back and enjoy. "Netflix and skill" :P
- List of individual Dynamic Programming problems (each is short)
- x86 Architecture, Assembly, Applications (11 videos)
- MIT 18.06 Linear Algebra, Spring 2005 (35 videos)
- Excellent - MIT Calculus Revisited: Single Variable Calculus
- Computer Science 70, 001 - Spring 2015 - Discrete Mathematics and Probability Theory
- Discrete Mathematics by Shai Simonson (19 videos)
- Discrete Mathematics Part 1 by Sarada Herke (5 videos)
- CSE373 - Analysis of Algorithms (25 videos)
- UC Berkeley 61B (Spring 2014): Data Structures (25 videos)
- UC Berkeley 61B (Fall 2006): Data Structures (39 videos)
- UC Berkeley 61C: Machine Structures (26 videos)
- OOSE: Software Dev Using UML and Java (21 videos)
- UC Berkeley CS 152: Computer Architecture and Engineering (20 videos)
- MIT 6.004: Computation Structures (49 videos)
- Carnegie Mellon - Computer Architecture Lectures (39 videos)
- MIT 6.006: Intro to Algorithms (47 videos)
- MIT 6.033: Computer System Engineering (22 videos)
- MIT 6.034 Artificial Intelligence, Fall 2010 (30 videos)
- MIT 6.042J: Mathematics for Computer Science, Fall 2010 (25 videos)
- MIT 6.046: Design and Analysis of Algorithms (34 videos)
- MIT 6.050J: Information and Entropy, Spring 2008 (19 videos)
- MIT 6.851: Advanced Data Structures (22 videos)
- MIT 6.854: Advanced Algorithms, Spring 2016 (24 videos)
- Harvard COMPSCI 224: Advanced Algorithms (25 videos)
- MIT 6.858 Computer Systems Security, Fall 2014
- Stanford: Programming Paradigms (27 videos)
- Introduction to Cryptography by Christof Paar
- Mining Massive Datasets - Stanford University (94 videos)
- Graph Theory by Sarada Herke (67 videos)
Computer Science Courses
댓글 없음:
댓글 쓰기